
Perception of Difficulty in 2D Platformers Using Graph
Grammars

Henry Fernández
Tokyo University of Technology
henrydfb@gmail.com

Koji Mikami
Tokyo University of Technology
mikami@stf.teu.ac.jp

Kunio Kondo
Tokyo University of Technology
kondo@stf.teu.ac.jp

Abstract
This paper summarizes the findings of a study on difficulty perception conducted with players of 2D side-scrolling platform
games which level design is automatically created. The primary goal of our research, is to offer players a suitable experience
that matches their abilities and the difficulty of the games they play. The study presented here was conducted to test the
calculations and formulas designed for a method that adapts the difficulty of a level according to the player skills through
level design. We created a new method that combines Dynamic Difficulty Adjustment and the principle of Graph Grammars
to create levels with a specific degree of difficulty, the novelty of our method lies on the use of Graph Grammars as a tool for
creating multipath levels in 2D platformers; an implementation of Graph Grammars applied to 2D platformers; the creation
of formulas that numerically estimate difficulty and insights about the perception of difficulty. Results show that the difficulty
estimation of our method and the difficulty perceived by participants of our experiment has a correlation coefficient of 0.75,
with a linear relationship and a strong correlation between both variables, demonstrating that the approach is heading to the
right direction. In addition, difficulty and performance have a correlation of -0.69, which shows an inversely proportional
relationship, more difficult levels have lower performance than easier levels; for this particular research this was an expected
result, confirming the method is doing the calculations properly.

Keywords: Game Design, Level Design, Game Development, Platformer, Procedural Content Generation, Dynamic Diffi-
culty Adjustment, Player Experience, Graph Grammars, Difficulty, Performance, Experience Design

1 Introduction
Our motivation for starting this study is the existence of imbal-
ance between the skills of players and the difficulty of the games
they play. We can see how this issue affects the overall expe-
rience for players when the difficulty of a game is not suitable
for the player’s abilities [1]. High skill players might feel bored
and low skilled players might feel frustrated when playing games
with unsuitable difficulty. A misleading experience can end up in
quitting the game as a result.

In a previous research, we combined electroencephalography
(EEG) and player performance with Dynamic Difficulty Adjust-
ment (DDA) and Procedural Content Generation (PCG): specif-
ically Rhythm-Group Theory [2], we obtained results from ex-
periments that indicated that the method we designed enables de-
velopers to adapt the level design’s difficulty depending on the
player’s skills.

This particular study consists of a preliminary exploration con-
ducted to test the base calculations of a more general method
designed for adapting the player experience. This new general
method we are still creating, follows the approach of our previ-
ous method but without the EEG component and focuses on a
new, more expressive PCG technique: Graph Grammars (which
enables the creation of more expressive and varied levels).

In this paper, we introduce our vision on how to apply Graph
Grammars to create multi-path levels in 2D platformers with spe-
cific degree of difficulty and show the results of experiments de-
signed to test the player’s perception about difficulty and how is
that related to the effectiveness of our method and the calculation
of difficulty in general.

Results show that there is a strong linear relationship between the
difficulty perceived by participants of our experiments and the
difficulty calculated by the algorithm we created, with a correla-
tion coefficient of 0.75.

In addition, we calculated the linear regression and correlation
coefficient of the computed difficulty and the player’s perfor-
mance, using formulas designed from our method, showing a cor-
relation of -0.69 which is a moderate correlation. Having a corre-
lation of -0.69 demonstrates that both variables are inversely pro-
portionals, they decrease or increase in opposite directions. This
is an expected result and is an indication that the calculations are
heading to the right direction.

2 Related Work
One of the reasons for imbalance between skills and challenge
to exist is the lack of harmony in game design, which could be
solved by changing the rules of the game [3]. The problem with

Received Feb, 14th, 2018. Accepted July, 7th, 2018.

38



this solution is that to match every kind of player’s skills is very
difficult.

A common way to tackle this issue is to include Dynamic Diffi-
culty Adjustment (DDA) techniques in their games [1][4][5]. By
doing this, the game adapts itself to the player, creating a suitable
experience. Previous researchers combined DDA and PCG tech-
niques in 2D platformers [6] which demonstrated to be a good
approach.

In addition, there are researchers like Noor Shaker and Georgios
Yannakakis who work towards personalizing the player experi-
ence automatically using PCG and Artificial Intelligence (AI)
techniques [7].

As an improvement of our previous research [2], we decided to
choose a more expressive PCG technique to create levels that
could be constructed with more than one path to increase diver-
sity and reduce the monotony and entertain the player with new
content.

The new method we decided to use, Graph Grammars, was orig-
inally designed for automatic dungeon creation by David Adams
[8] for his Bachelors thesis research. We found in previous re-
search that Graph Grammars shows how this technique has been
tested and compared against other methods for automatic content
creation [9], having interesting results creating dungeon maps
driven by gameplay. In addition to this, the Graph Grammars
method was used in a recent research about a learning game to
teach parallel programming [10], which was partially successful
showing positive results in automatic puzzle creation.

Some researchers have explored the idea of appliying the same
method to 2D platformers: proposing a graph-based repre-
sentation of Super Mario Bros levels using graph grammars
[11],[12],[13]. Joris Dormans and Sander Bakkes have focused
on using generative graph grammars to procedurally generate
missions for action-adventure games, which due to their nature
of nonlinear structures creation make them a suitable solution for
games that involve exploration [14],[15]; in this research they
demonstrated that graph grammars could be a powerful tool to
use the advantages of procedural generation and human design in
the creation of mission and level design.

Using a dungeon crawler game case of study, researchers con-
cluded that graph grammars can be expressive enough to con-
struct design levels in this type of games, leading to the creation
of a variety of possibilities with rich and interesting results for
players to explore and enjoy [16].

Besides Graph Grammars, we focused this particular study on
perceived difficulty, defined as relative difficulty minus the play-
ers experience at meeting specific challenges [17].

A previous study that involves Bayesian optimization shows
that there is a significant relevance between perceived difficulty
and engagement [18]. Researchers found that players attributed
changes in their performance to their own capacity, which was in
reality affected by the covert manipulation of difficulty done by

researchers.

We consider that our contribution adds up to previous research on
the importance of examining difficulty from the player’s point of
view when analysing games [19] and the evaluation of different
factors (including difficulty) on the player’s performance [20].

3 Graph Grammars
The concept of graph grammars involves the idea of having a
grammar that handles graphs instead of strings. One of the rea-
sons for replacing strings by graphs when automatically creating
levels is that due to their nature, graphs are a good fit to parti-
tion and represent the 2D space. Among the advantages of using
graph grammars to build levels instead of other kinds of gram-
mars is that they provide much more flexibility when creating
variation and randomness. In addition, they allow creating com-
plex levels in a more natural way [8].

The following, shows a formal definition of a directed graph: G
:= (V,E,lV, lE, s, t), where:

• V(G) := V is a finite set of vertices
• E(G) := E is a finite set of edges
• lV(G) : V LV is a labelling function for vertices
• lE(G) : V LE is a labelling function for edges
• s(G) : E V assigns each edge to its source
• t(G) : E V assigns each edge to its target

A graph grammar is formally defined as a tuple (A,P) where A
is a non-empty initial graph and P a set of graph grammar pro-
ductions. Most approaches of graph production definition con-
cur that each production consists of two parts: left-hand side and
right-hand side. Being the left side of the production the one
that defines how to replace and transform graphs in the grammar
[8]. The set of productions defined in the method we propose are
shown in section 3.1.

The method we designed to implement Graph Grammars in 2D
platformers consists of three different systems that we called:
topological map system; area designation system and a graphi-
cal map system. In a very brief way, the topological map defines
how many nodes and how are the nodes connected in the graph;
then, the area designation system assigns a type to each node in
the graph; finally the graphical map system sets a representative
game object for each node in the graph. Figure 1 shows the gen-
eral approach of our method.

3.1 Topological Map
This map is the logical representation of the level. The following
rules are the set of productions designed to define the grammar
used to create the topological map.

1. Starting Rule: This production ensures that there is always
a start and there is always an end. It includes a start node S
connected directly to the ending node E.

2. Adding Rule: The adding rule enables the algorithm to in-
clude more nodes between nodes. We have two different

39



Figure 1 Graph Grammars Creation Approach:. The topo-
logical map creates a graph. The area divided map sys-
tem assigns a type to each node of the graph. Finally
the output area graph is used by the graphical map sys-
tem to create a level.

types of adding rules:
(a) Linear adding rule: the node is created in one of the

extremes of the path, increasing the length of this path.
(b) Non-linear adding rule: The node is created in a dif-

ferent path to the one that is being added. This usually
introduces a new level in the system.

3. Linking Rule: The linking rule takes a couple of nodes and
links them. This link could be directed or not directed. Two
main cases can be considered when linking nodes:
(a) Case A: Two nodes of the same path are connected
(b) Case B: Two nodes of different paths are connected

4. Changing Rule: The changing rule enables the algorithm to
decide a direction change after connecting all nodes.

5. Deleting Rule: This production says that we can eliminate
nodes from a graph when needed.

6. Ending Rule: This production ensures that the result level
can be cleared. In addition, it will ensure that there is always
a complete path from the start of the level to the goal.

In this part of the process there are three main steps to ensure that
the map is well created and will output an expected result, these
are: main path, secondary path and arcs direction.

1. Main Path: This is the path that connects the start of the
level to the end. This ensures that the level can always be
finished by the player. This path is mandatory in every level.

2. Secondary Path: All paths that are connected to the main
path and are not the main path, are called secondary paths.

3. Direction: The last segment of map generation enables the
algorithm to change the direction of each arc to build a
unique level. This adds variety and diversity and reduces
the probabilities of having two similar levels.

All the previously explained steps guarantee the construction of
a final map and sets the basis to create an output that can be used
as a playable level in the end of the process. An example of a
topological map can be seen in figure 2.

3.2 Area Designation Map
The result graph created by the topological system passes through
a system that takes every node in the graph and assigns an area
type, areas can be ”safe areas” or ”dangerous areas”.

A safe area is defined as a platform (of any length) where play-

Figure 2 Example of a topological map. As we can see, there
is a main path from S (start) to E (end) and, in ad-
dition, a second level (secondary path) with intercon-
nected nodes.

Figure 3 Example of an area divided map. Using the topolog-
ical map from 2, this is an example of a possible area
divided map, after assigning safe and dangerous areas.

ers can stand safely, it means, not harming game objects will
be found in this type of area. Examples of this type of areas
are: empty platforms (no enemies) and platforms that contain el-
ements such as obstacles to stand on them, etc.

A dangerous area is defined as a platform (of any length) where
players can die, usually represented by areas that contain enemies
that can harm the player in any way, examples of this type of
areas are: movable platforms, platforms with enemies, platforms
that fall, etc.

The starting and ending node are both set to safe areas, however
it is possible to modify these rules and adapt them depending on
the designer’s needs. An example of an area divided map that
matches the topological map in figure 2 can be seen in figure 3.

The number of dangerous areas is decided using the expected dif-
ficulty for the level and multiply that by the total number of areas
in the level. The calculation can be seen in equation 1.

a = ldn (1)

Where:

• a: Number of dangerous areas
• ld: Expected difficulty for the level
• n: Number of nodes in the graph

3.3 Graphical Map
The graphical map is the physical creation of the elements in the
level. The main function of this system is to decide where to put
each game object on the screen and how. This process translates a
topological map to a graphical positions on the screen. Designers
can decide and adapt this system according to the type of game

40



Figure 4 Example of graphical map. Using the area divided
map of 3, this is an example of a possible graphical
map.

elements that exist in their games. An example of a graphical
map can be seen in figure 4.

4 Difficulty
The approach we took to calculate difficulty in a level is: assign
difficulty values to each area in the graph and use those difficul-
ties to calculate a general difficulty for the level. The general
calculation of difficulty for a level can be seen in equation 2.

ld =
n
m

V1 +
n

∑
i=1

diV2 (2)

Where:

• ld: Difficulty calculated for one level
• n: Number of dangerous areas in the level
• m: Number of total areas in the level
• di: Difficulty of each area (see equation 5)
• Vi: Weights that represent how much influence the compo-

nent has

As preliminary parameters for this research we decided to start
with V1 to 0.5 and V2 to 0.5 as well, due to the influence that
both components have in the overall difficulty.

The calculation for each area is carried out using the game ob-
jects that are on it, difficulty values are assigned (by the designer,
depending on the game) to each game object, for calculation diffi-
culty only dangerous objects count.The difficulty calculation for
each area is shown in equation 5.

ad =
n
m

W1 +
n

∑
i=1

diW2 (3)

Where:

• ad: Difficulty calculated for one area
• n: Number of enemies in the area
• m: Maximum number of enemies in that area
• di: Difficulty of each enemy (see table 1)
• Wi: Weights that represent how much influence the compo-

nent has

For this research, we set W1 to 0.9 and W2 to 0.1. As prelimi-
nary values we chose these two because the number of elements
in a platform affects directly the performance, the more enemies,
the higher the chance to get hit by them which means the perfor-
mance would be lower.

To calculate the difficulty for each enemy, we interpret each skill
shown in table 1 as one point of difficulty. Calculated difficulties
are explained as follows:

1. Moves X Axis: Enemies that can walk or run. Moving
makes an enemy more difficult than not moving.

2. Moves Y Axis: Enemies that can fall, jump, etc. Moving
makes an enemy more difficult than not moving.

3. Shoots: An enemy that can shoot is more difficult than one
that cannot shoot.

4. Beatable: Enemies that can be beaten by the player (jumping
on its head), an enemy that cannot be beaten is more difficult
than an enemy that can.

5. Visible: Enemies can hide, this makes it more difficult than
an enemy that cannot hide.

6. Timing attack: The player has to be on alert when the enemy
attacks, this adds a point of difficulty.

7. Aim: Aims at the player before attacking, this makes the
enemy smarter, one more point of difficulty.

8. Player can stand: If the player can stand on this enemy
sometimes and not be harmed by it, the enemy becomes
easier. We add 1 point to all those enemies that the player
cannot stand on them.

Depending on the kind of game that is being designed by the
developers, the values in the difficulties table could vary to adapt
to a more accurate result. For simplicity we decided to give one
point of difficulty to each skill.

5 Player Performance
The player’s performance calculation involves how many times
is the player hit by an enemy, level clear time and number of col-
lected coins. Equation 4 shows the calculation of the performance
for this method

p =
1

(d +1)
X1 +

eT
gT

X2 +
c
m

X3 (4)

Table 1 Enemies features: Binary representation for the skills:
1=true,0=false

Enemies Difficulties
Enemy 1 Enemy 2 Enemy 3 Enemy 4 Enemy 5

Moves X Axis 0 0 0 1 1
Moves Y Axis 0 1 1 0 0
Shoots 1 0 0 0 0
Beatable 1 0 0 0 1
Visible 1 1 0 1 1
Timing Attack 1 1 1 0 0
Aim 1 0 0 0 0
Player Can Stand 0 0 1 0 0
Total 4 4 4 3 2

41



Figure 5 Game Elements. A: Player; B: Enemies, beatable and
unbeatable; C: Coins, motivation to explore; D: Gap;
E: Goal; F: Player’s health and coins (3 per level); G:
Game Time; H: Current Level.

Where:

• p: Calculated performance
• d: Number of deaths
• eT: Level estimated time (15 seconds)
• gT: Level cleared time (cannot be less than eT)
• c: Number of collected coins
• m: Maximum number of coins per level (3 coins)
• Xi: Weights that represent how much influence the compo-

nent has

For this study we started testing with a set of parameters that we
consider is the most suitable combination of values: X1: 0.5, X2:
0.15 and X3: 0.35, decided by the importance of each parameter
in the equation.

6 Implementation and Experiments
The game is a side-scrolling 2D platformer in which the player
has to reach a goal placed on the right-most part of the level.
The player is also required to overcome very simple challenges:
gaps between platforms, beatable enemies and unbeatable ene-
mies, both types of enemies static. We also included 3 collectable
coins to increase motivation for the player to explore different
paths. Figure 5 shows the elements of the implemented game.

Players were required to play and clear 12 different levels gen-
erated automatically by our system. The first three levels were
part of a tutorial to give players a sense of difficulty and rating.
After finishing one level, players were taken to a results screen
that showed a set of 10 different options to rate the level: [1-10];
being 1 the easiest and 10 the hardest values. Numbers were pre-
sented as integers to the player but they were normalized (0,1) for
our internal calculations. The whole flow of the experiment can
be seen in Figure 6.

We collected data from 16 different players. All participants were
between 21 40 years old; almost all of them with previous expe-
rience playing Super Mario Bros (which we asked to have back-
ground information about their skills), one of the players (6.25%)
has never played Super Mario Bros before, only the 7 players
(43.75%) have cleared the game at least once.

For our implementation, we consider the following parameters:

Figure 6 Experiments. Players played three tutorial levels and
nine levels for which difficulty was randomly calcu-
lated. After playing a level players rated its difficulty.

minimum number of nodes in the main path, maximum number
of nodes, maximum number of secondary paths, minimum num-
ber of branch nodes and maximum number of branch nodes.

1. Minimum number of nodes in the main path
2. Maximum number of nodes in the graph
3. Minimum number of secondary paths
4. Maximum number of secondary paths
5. Minimum number of branch nodes
6. Maximum number of branch nodes

In our experiments, the parameters of this system we set to the
minimum possible values for simplicity. The whole creation of
a topological graph is done randomly and automatically. Since
this step of the process does not involve any graphical elements,
we do not consider difficulty when creating this first part of the
graph.

Graph Grammars System
In our implementation, the Graph Grammars method involves
three different sub-systems: topological map system, area divided
map system and graphical map system, each one with a clearly
different purpose.

Topological Map: Graph Creation
A set of parameters are important to take into consideration to
construct a graph, these are: minimum number of nodes in the
main path, maximum number of nodes, maximum number of sec-
ondary paths, minimum number of branch nodes and maximum
number of branch nodes. For our research we used the following
values:

1. Minimum number of nodes in the main path: number of
starting nodes between the node S (start node) and node E
(end node). We set this value to 3.

2. Maximum number of nodes: Including all paths, main and
secondary, the maximum number of nodes was set to 15.

3. Minimum number of secondary paths: number of paths (be-
sides the main path) to start. The algorithm can create

42



graphs with no secondary paths.
4. Maximum number of secondary paths: For simplicity, this

parameter was set to 1, it means, in total, a level created by
this algorithm could have 2 paths.

5. Minimum number of branch nodes: its related to the mini-
mum number of nodes that can be created as a branch of an
existing node. We set this parameter to 1.

6. Maximum number of branch nodes: its related to the maxi-
mum number of nodes that can be created as a branch of an
existing node. We set this parameter to 3.

We set these parameters to the minimum possible values for sim-
plicity and to demonstrate the capabilities of our method.

Figure 7 and 8 show are examples of levels created for a low
performance player and a high performance player respectively.
Both results were generated using the Graph Grammars imple-
mentation explained in this section.

Area Divided Map
In addition to assigning a type to each node (area) of the graph,
this system calculates the difficulty of each dangerous are de-
pending on the expected difficulty of the whole level. The dif-
ficulty calculation for each area is shown in equation 5.

ad =
n
m

W1 +
n

∑
i=1

diW2 (5)

Where:

• ad: Difficulty calculated for one area
• n: Number of enemies in the area
• m: Maximum number of enemies in that area
• di: Difficulty of each enemy (see table 1)

For this research, we set W1 to 0.9 and W2 to 0.1. As prelimi-
nary values we chose these two because the number of elements
in a platform affects directly the performance, the more enemies,
the higher the chance to get hit by them which means the perfor-
mance would be lower.

To calculate the difficulty for each enemy, we interpret each skill
shown in table 1 as one point of difficulty. Calculated difficulties
are explained as follows:

1. Moves X Axis: It means the enemy can move in the X axis,
enemies that can walk or run. Moving makes an enemy
more difficult than not moving, if the enemy moves it gets
one point o difficulty.

2. Moves Y Axis: It means the enemy can move in the Y axis,
enemies that can fall, jump, etc. Moving makes an enemy
more difficult than not moving, if the enemy moves it gets
one point o difficulty.

3. Shoots: An enemy that can shoot is more difficult than one
that cannot shoot, shooting gives one point of difficulty to
an enemy.

4. Beatable: The enemy can be beaten by the player (jumping
on its head), an enemy that cannot be beaten is more difficult
than an enemy that can, an unbeatable enemy gets one point
of difficulty.

5. Visible: Enemies can hide (like enemy 3), this makes it more
difficult than an enemy that cannot hide. Hiding enemies get
one point of difficulty.

6. Timing attack: since the player has to be on alert when the
enemy attacks, this adds a point of difficulty to this kind of
enemy.

7. Aim: Aims at the player before attacking, this makes the
enemy smarter, one more point of difficulty.

8. Player can stand: If the player can stand on this enemy
sometimes and not be harmed by it, the enemy becomes
easier. We add 1 point to all those enemies that the player
cannot stand on them.

Depending on the kind of game that is being designed by the
developers, the values in the difficulties table could vary to adapt
to a more accurate result. For simplicity we decided to give one
point of difficulty to each skill.

Number of dangerous areas
To decide the number of dangerous areas, we use the expected
difficulty for the level and multiply that by the total number of
areas in the level. The calculation can be seen in equation 1.

Graphical Map: Level Creation
An explanation on how to create game objects for each area is as
follows.

1. Coins: Coins can be placed in any type of area, safe or
dangerous and there is a fixed amount of coins per level (3
coins) so we randomly choose 3 areas (could be the same
area) and decide where the coins will be.

2. Safe Areas: When geometrically construction safe areas,
we can decide to add a coin, a harmless obstacle or noth-
ing. Coins have priority because it is mandatory that each
area with a coin shows that coin somewhere. After decid-
ing where the coin should be placed, the rest of the available
spaces in the are set to having an obstacle or being empty.
We do this randomly.

3. Dangerous Areas: To decide what enemies will be placed in
a dangerous area, we use the same approach that we used
to calculate how difficult an area should be but instead of
using the whole levels difficulty, we use the areas difficulty
and distribute the enemies on the area in a random way.

7 Results and Analysis
In order to analyse the results, we calculated the linear regression
of the computed difficulty, perceived difficulty and performance
in two different plots. Figure 9 shows the results of the calculated
difficulty and perceived difficulty, figure 10 shows the results of
the calculated difficulty and performance calculated by the algo-
rithm.

43



Figure 7 Low performance player. A level created for a low performance player, few challenges, easier to clear

Figure 8 High performance player. A level created for a high performance player, more challenges, more difficult to clear.

Figure 9 Perceived Difficulty vs Performance. The horizon-
tal axis shows the calculated difficulty, vertical axis the
perceived difficulty. We can clearly see a strong linear
relationship between the variables.

7.1 Difficulty Calculation
The correlation coefficient for calculated vs perceived difficulty
variables was 0.75, which is considered a strong correlation
(more than 0.7) using statistical basics. This means that both re-
sults are strongly related, which demonstrates that the approach

Figure 10 Performance vs Calculated Difficulty. The horizon-
tal axis shows the calculated difficulty, vertical axis
the performance. We can see a linear inversely pro-
portional relationship between the variables.

of the calculations of difficulty in our algorithm are heading in
the right direction.

One of the reasons that these results might have been affected
is the way the experiment was designed, each level’s difficulty

44



was decided randomly during the experiment, with no particular
order in way the difficulty was presented to players. We consider
that a way to improve this experiment is to control exactly which
difficulty and when to present it to players.

Despite the fact that the calculations and the experiment should
be modified and improved to avoid abrupt changes of difficulty
while playing, having a 0.75 of correlation between the perceived
difficulty and the calculated one is a positive result. This means
we can keep enhancing this method to achieve better results.

7.2 Performance and Difficulty
In figure 10 we can see how the data has a strong linear inverse
tendency, with a correlation coefficient of -0.69, despite the fact
that is not as high as 0.7 to qualify as strong correlation, it’s a high
value that represents a close relationship between the difficulty
and performance calculated by the algorithm. This result shows
that difficulty and performance are inversely proportional in this
case, the higher the difficulty, the lower the performance, which
in a way would be an expected result, however it depends on the
kind of player that is playing.

Since the conducted experiments did not involve any adaptation
functionality, we consider this a positive result, nonetheless for
the ultimate goal of our research, adapting the player experience
according to the player’s skills, this correlation should be the op-
posite.

8 Conclusions
We successfully implemented a method that involves Graph
Grammars to create multipath levels in 2D platform games, which
increases expressiveness and variety of automatically created lev-
els in procedural construction of levels.

This is only a first approach of a more general and bigger pur-
pose method that we are currently designing to adapt the player
experience through difficulty balance and performance.

Our experiment showed a 0.75 correlation coefficient between the
difficulty calculated by our algorithm and the difficulty perceived
by players. This strong correlation demonstrates that the ap-
proach is heading to the right direction, however we need to keep
improving the current results to design a more robust method that
accurately defines difficulty for players.

Results also showed that performance and difficulty have a corre-
lation of -0.69, which is near to be considered a strong correlation
and reinforces an expected consequence: the level’s difficulty and
player performance are inversely proportional. This result in the
general approach of experience adaptation should be the opposite
at some point where the performance of players increases along
with the difficulty of the levels they play.

We need to keep improving the method by changing the parame-
ters of each formula and test accordingly with players to find the
best values and get positive results. In addition, new experiments

should be designed and conducted to evaluate the accuracy of
this method. Finally we will include these calculations in a more
general method designed to adapt player experience and compare
results.

References
[1] Jared E. Cechanowicz, Carl Gutwin, and Scott Bateman. Im-
proving player balancing in racing games. In Proceedings of CHI
PLAY ’14, pages 47–56. ACM New York, NY, USA 2014, Octo-
ber 2014.
[2] Henry Fernández, Koji Mikami, and Kunio Kondo. Adapt-
able game experience through procedural content generation and
brain computer interface. In Proceedings of SIGGRAPH ’16
Posters. ACM New York, NY, USA 2016, July 2016.
[3] Eva Kraaijenbrink, Frank Gils, Quan Cheng, Robert Herk,
and Elise Hoven. Balancing skills to optimize fun in interactive
board games. In Proceedings of INTERACT ’09, pages 301–313.
Springer-Verlag Berlin, Heidelberg 2009, August 2009.
[4] Alexander Baldwin, Daniel Johnson, and Peta A. Wyeth.
The effect of multiplayer dynamic difficulty adjustment on the
player experience of video games. In Proceedings of CHI EA
’14, pages 1489–1494. ACM New York, NY, USA 2014, April
2014.
[5] Robin Hunicke. The case for dynamic difficulty adjustment
in games. In Proceedings of ACE ’05, pages 429–433. ACM New
York, NY, USA 2005, June 2005.
[6] Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-
Fruin. Polymorph: Dynamic difficulty adjustment through level
generation. In Proceedings of PCGames ’10. ACM New York,
NY, USA 2010, June 2010.
[7] Noor Shaker, Georgios Yannakakis, and Julian Togelius. To-
wards automatic personalized content generation for platform
games. In Proceedings of AIIDE ’10, 2010.
[8] David Adams. Automatic Generation of Dungeons for Com-
puter Games. University of Sheffield, UK, 2002.
[9] Roland Van Der Linden, Ricardo Lopes, and Rafael Bidarra.
Procedural generation of dungeons. In IEEE TRANSACTIONS
ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES
2014, pages 78–79, 2014.
[10] Josep Valls-Vargas, Jichen Zhu, and Santiago Ontanon.
Graph grammar-based controllable generation of puzzles for a
learning game about parallel programming. In Proceedings of
the 12th International Conference on the Foundations of Digital
Games. ACM New York, NY, USA 2017, August 2017.
[11] Kate Compton and Mateas Michael. Procedural level de-
sign for platform games. In AIIDE 2006, pages 109–111. Amer-
ican Association for Artificial Intelligence 2006, June 2006.
[12] Wang Hanqing, Koji Mikami, and Kunio Kondo. A Re-
search on the method of Automatic Map Generation of Platform
Game. Tokyo University of Technology, Japan, 2010.
[13] Santiago Londono and Olana Missura. Graph grammars for
super mario bros * levels. In Sixth FDG Workshop on Procedural
Content Generation, At Asilomar, Pacific Grove, CA, USA, June
2015.
[14] Joris Dormans. Adventures in level design: generating mis-
sions and spaces for action adventure games. In PCGames ’10
Proceedings of the 2010 Workshop on Procedural Content Gen-

45



eration in Games, June 2010.
[15] Joris Dormans and Sander Bakkes. Generating missions
and spaces for adaptable play experiences. IEEE Transactions
on Computational Intelligence and AI in Games, 3(3):216–228,
2011.
[16] Roland Van Der Linden, Ricardo Lopes, and Rafael Bidarra.
Designing procedurally generated levels. In 2013 AIIDE Work-
shop, pages 78–79, 2014.
[17] Ernestn Adams. Fundamentals of Game Design, Second
Edition. Pearson Education Inc, New Riders 1249 Eighth Street
Berkeley, CA 94710, 2010.
[18] Mohammad M. Khajah, Brett D. Roads, and Robert V.
Lindsey. Designing engaging games using bayesian optimiza-
tion. In CHI ’16 Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, pages 5571–5582, 2016.
[19] Marı́a V. Aponte, Guillaume Levieux, and Stephane Natkin.
Measuring the level of difficulty in single player video games.
Entertainment Computing, 2011, 2(4):205–213, 2011.
[20] James Fraser, Michael Katchabaw, and Robert E. Mercer.
A methodological approach to identifying and quantifying video
game difficulty factors. Entertainment Computing, 2014, 2014.

46




