
1 Introduction
The term Augmented Reality (AR) refers to the possibility of
extending our perceived reality (real world) by adding
computer-generated imagery to complete or replace physical
objects we see. This mixed reality can be exploited in many
ways, whether by making use of head-mounted or hand-held
devices, resulting in individual AR experiences, or by
overlaying, displaying or projecting virtual contents on the
surface of physical objects, resulting in a collective AR
experience [1]. Spatial Augmented Reality (SAR, also known
as projection mapping) is a current trend on developing all
sorts of mixed reality interfaces from artwork installations,
experimental movies or games [2,3,4]. The use of projectors
makes it possible to add new layer of virtual contents
displayed on physical objects. Because of this characteristic,
SAR can be easily associated with tangible user interface as a
method to translate between shared virtuality and reality.
Interaction with spatially augmented objects is however, in
many cases, limited to a setup where objects and projectors
remain static in relation to each other or present some lack of
mobility. Our research is motivated by exploiting techniques
capable of producing adhesive SAR to be laid on top of non-
static objects. Here we discuss about the piece of hardware
developed in order to run our experiment with spatial scenes
(Figure 1) and point out these actions characteristics.

!
Figure 1 - Spatial actions are performed on physical creases
mixing support object movement synchronised with animation
designed to enhance the sense of depth in the projected scene. 

Sidestep and Sneak peek: spatial actions in augmented
reality games  
ARSurface - Dynamic Spatial Augmented Reality for Tangible Interface

Sudario, Anderson B.
Kyushu University
Fukuoka, Japan
absudario@gmail.com

Tomimatsu, Kiyoshi
Kyushu University
Fukuoka, Japan
tomimatu@design.kyushu-u.ac.jp

Abstract
We propose a novel concept of game, which allows players to experience tangible interaction with the virtual world of
digital games by mixing motorised scenery with dynamic projection mapping.
A specific hardware - which includes a controllable platform, on where players can setup customised polygonal shaped
scenery to play games projected onto its surfaces, and a single, or a pair, of focus free laser pico-projectors pointed
toward the platform direction - is proposed as a game console able to run this experiment. The controllable platform
orientation is synchronised with the game play in a way the moving physical scenery and the projected virtual contents
are constantly aligned. By designing 3-dimensional (3D) animations, which are rendered and projected in accordance
with the physical surface orientations, we were able to enhance the illusion of depth toward these planar projection
during the game play, while giving the chance for our flattened 2-dimensional (2D) main character to make use of all
directions which surrounds him.
The use of projection mapping is justified since we intent to exploit the characteristics of projected 2D light onto 3D
objects in order to extend digital games means of expressions. In this paper we discuss about spatial actions, which are
actions players can perform at physical object creases. When synchronised with motor movements, these actions extend
the sense of volume in relation to the game character providing a tangible connection between players and digital
content. We also discuss about the technical aspects regarding the development of this project and its application as a
tangible game design tool.

Keywords: game design, tangible interface, projection, mixed reality

77

Received December 20, 2016; Accepted December 30, 2016

 

2 Related work
Most of the digital game experiences designed to have
tangible interfaces using SAR are somehow based on tabletop
game plays, in such way players can manipulate physical
props like mini-figures or cards [5,6], having the projectors
fixed above a table. As example, researches and commercial
products such as Microsoft PlayAnywhere [7], and Lampix [8]
seems to be aligned with this setup.
Other setups that allow projection to be expressed on 3-
dimensional objects or surfaces with or without any degree of
freedom are also available:
• ARmy [9] is a tabletop military strategy game where players
can use primitive-shaped blocks to build up their own board
before the game starts. A camera positioned above the board
detects the blocks distribution to calculate the game dynamics.
During the game play the board remains static while mini-
figures are manipulated directly by players, thus updating the
game instructions.
• RoomAlive [10] is a concept of immersive gameplay in
which the player's room is 3-dimensionally scanned, allowing
the system to make use of each physical surface to be part of a
SAR experience game. During the game play the previously
scanned surfaces remains static while the players’ bodies
movements update the game framework.
• SideBySide [11] proposes a portable device, which embeds
an IR camera in a portable projector. Working similarly as a
flashlight, which projects virtual information directly on
planar objects. The player can freely move this hand-held
device and project contents on apparently any dull surface.
The contents are updated accordingly to the device orientation
and readings from the IR camera (when using IR markers).
Projecting virtual contents onto moving objects requires the
system to be aware of what content and how this content must
be projected (Figure 2). The basic framework for this kind of
applications relies on how the player’s interaction over the
target objected is detected by image sensors, and how fast and
efficient the system reads data from these sensors to extract
relevant information necessary to update the contents to be
projected.
Other than limiting the target objects to be moved in a slow
manner, running sophisticated computing vision subroutines in
real time can overload graphic processors. This affects the
application main routine, reducing interaction performance.
Consequently this compromises the projection alignment with

the target support, vanishing the illusion necessary to create
convincing mixed reality. An alternative would require a
extremely high-rate frame rate camera-projector module
(above the average 60 fps) [12] connected to a system capable

of running both computing vision subroutine and game play.
Instead, in our experiment we are working in the opposite
direction, having the player to control the system which in its
turn mechanically controls the physical object (Figure 3). This
technique has the advantage of eliminating computing vision
subroutines, thus having the processors dedicated to the
generation of virtual imagery to be projected. Also, because
the motor spins accordingly to known constants, it is possible
to rotate it at any speed supported by the hardware (±10 to 100
RPM) without having the virtual projection to be misaligned
with the physical object support.

3 Hardware and software development
3.1 Hardware
Originally, the physical object used as game stage can have as
many degrees of freedom as the number of motors or actuators
connected to the system. At this very stage, hardware and
software are under development in order to facilitate its
evaluation, while the main procedures runs satisfactorily. We

Figure 3 - An (a) physical object lays on top of (b) a
controllable platform-hardware placed in front of a (c) free-
focus laser projector. Projector and hardware connected to PC.
Composition proposed as game console for this experiment.

Figure 2 - Dynamic SAR interactions designed for moving supports depend on image sensors to detect target object movements before
updating contents to be projected. (a) Side by Side hand-held camera-projector device. (b) Reflective IR markers detected by cameras,
used on Project Omote, (c) Scanning the environment with Microsoft Kinect sensor in RoomAlive project.

78

present the hardware including only one degree of freedom, as
a turntable platform connected to a 200 steps/revolution
stepper motor which is driven by a microcontroller subjected
to PC commands. The system can recognise the angle of this
turntable to project onto the support object accordingly. When
hardware is turned on it will run a self-alignment procedure so
the its rotor will start at origin.

The turntable platform is stabilised by 3 bearing balls located
bellow its disc contact points. In addition, the platform disc is
perforated in a pattern, which allows the posterior fixation of
objects (Figure 4). Physical objects used as support for
projection can be made of paper, or 3D printed, having its
surface made dull for better illumination. Pico-projectors are

portable devices designed to project contents during more
casual situations. Their lenses field of view are not so wide
and the brightness and contrast they offer are limited, since
they use different source of light in comparison to desktop
projectors, such as LED or Laser. The choice of using a laser
projector is due to its focus free characteristic, perfect for the
case where the distance between projector lens and projected
surface isn't a constant. Also, the lenses characteristics of these
projectors allows small details to be observed with satisfactory
resolution on the nearly projected surfaces.

3.2 Software
Developed in Processing IDE [13], it consists of three basic
modules, which are able to run a projector-calibration tool, an
interface to the microcontroller, and the game play. Projector
calibration is made every time a new support is changed or
when projector or turntable changes their position in relation
to each other. The motor control sends data to the hardware
depending on game instructions. These data are degrees of
rotation the motor is set to perform and revolution speed.
Motor control can also read if hardware has completed its self-
calibration procedure in order to setting up rotor at origin. The
game play runs a basic physics class capable or allowing the
player to move the game main character along the scenes. The
game is composed by a sequence of planes, designed and
mapped to each polygonal surface found on the physical
object. When the player moves through the game, the motor is
instructed to rotate accordingly. In this scenario, motor can run
smoothly, following the character position, or revealing next
scenes abruptly if this is the intention of the stage design. 

 

4 Spatial actions  
We suggest two spatial actions, which can be performed by the
game main character in order to enhance the perception of 3D
space or depth in SAR interactions. Spatial actions are designed
to combine digital animation and physical object movement in
such way players have the illusion of volume coming from the

projected surfaces. These actions are provided by making use of
the physical creases found on the support object and giving to it
an opportunity to serve as attributes in the game such as places
the game character specifically can use to perform spatial
actions, as seen in Figure 5. 

Figure 4 - Hardware is connected to a PC by (a) serial cable,
which controls (b) a stepper motor. A support object is fixed

on (c) a perforated disc mounted on top of the hardware.

Figure 5 - Spatial actions designed for the turntable platform hardware. Animation plays aligned with the rotation of object support
enhancing the illusion of depth.

79

To follow with the explanation about spatial actions, we would
like to highlight two spatial actions of them, which are used in
our application: Sneak peek and Sidestep.

4.1 Sneak peek
Sneak peek actions take places on vertically oriented creases
representing a wall corner from where the avatar can “spy”
contents on its adjacent polygons in stealth mode. The crease
angle between polygons must be physically constructed to
make possible such kind of action inside the game. As a
default value, if the crease angle between adjacent polygons
are greater than 60°, the system will accept sneak peek action
on this location. By performing this command, players can
anticipate what is coming on next game scenes and get ready
for a duel or reward, or even finding another path to go in
order to avoid that area of the game.

4.2 Sidestep
Sidestep actions allows a runway manoeuvre to dodge enemy
fire or seek temporary refuge. In a traditional 2D platform
game, player would block or try to escape from enemy’s fire
while being trapped on a 2D coordinate system. In a first
person shooter game, players can also dodge left or right from
enemy’s fire by hiding behind walls or door frames. In our
game, we experiment a hybrid dimensional action, allowing a
2D character to make use of the physical geometry of the
object onto where it is being projected. The sidestep action can
be performed in spots where crease angle found on support
object allows this kind of interaction between animation and
support object. That is, when adjacent faces are not flat.
Sidestep action is designed for vertical or horizontal creases,
but subjected to the game design basic rules.

4.3 Other actions to be developed
There are other actions that can be applied to the game in
order to explore the geometry and solid properties of the
physical object. As example, the use of tunnels or holes,
proposed on the game as means to transport the character from
a place to another, can bring the discussion about how hollow
the physical object can be, and how the use projection
mapping can influence our perception toward the
characteristics of the object as we know.

5 Projection and other technical aspects
5.1 Projector calibration
The projector calibration is a procedure used for solving the
projector projection matrix. Specially for dynamic projection
mapping, that is to say, when the spatial relationship between
projector and illuminated object are constantly changing, this
matrix is a key element for ensuring the precise alignment
between projected virtual content and physical surfaces. The
matrix contains information about the projector intrinsic and
extrinsic parameters, such as the projector field of view, the
projector screen size, the projector center position and
orientation, among others. These parameters are stored in the
form of a 4 x 3 matrix which are used to convert a 3D point in
the virtual world to its correspondent 2D position on the

projector projection plane. Thus, every fragment existing in
our game application has its 3D coordinates multiplied by the
projector projection matrix in order to display correctly on top
of their correspondent planes in the physical support object.
We have developed a tool in order to calibrate the projectors
used in our application. The calibration process basically
compares a physical object to its equivalent 3D virtual model
(Figure 6 a and b). We have adopted a calibration method
based on the single-camera calibration method suggested by
Richard Radke [14]. This method requires the user to
arbitrarily chose six non-coplanar vertices stored in a desired
sequence. Having the physical object completely covered by
the projection frame, the user can use a mouse cursor. to click
over the previously determined vertices in the same sequence
as those have been stored (Figure 6 c). Next, the system has
enough information from the collected correspondent points to
solve the projection matrix and project contents (Figure 6 d).
The projector is said to be calibrated as long as the projector
and physical object remains in place. Ideally, projector and the
object platform should be fixed on the same base to avoid
recalibration in case projector must be relocated.

5.2 Dynamic projection mapping
So far, the projection calibration can provide us relative
accuracy for mapping physical objects in order to have them
prepared for projections. However, similar results could be
easily achieved using geometric distortion correction [15], that
is, manually (e.g. using a mouse cursor) adjusting the image
plane by dragging its corners until it gets visually aligned to
the surface of the object one wants to project onto.
In order to have dynamic projection mapping we need to keep
track of the physical object position and orientation after
calibration process is performed so the system can
automatically recalibrate the projector on the fly. As
mentioned before, the current system developed for our game

Figure 6 - a) 3D model representation of the physical object
(b) used as base for projection; c) Crossed cursor projected on
object for projector calibration setup; d) Virtual contents
projected onto the physical object after calibration.

80

application does not rely on any sensor, such as cameras, in
order to track and retrieve information of the physical object
being used as support for the projection. However, since the
object is manipulated by user via system instructions, the
system always knows where the physical object is positioned,
preserving the calibration results as expected. A similar
experiment [16] was conducted by the artist Cyril Diagne,
having a physical object spinning at a controlled speed, which
allowed the system to be aware of how to perform the
projection mapping as expected.

5.3 Projection and game objects layers structure
In 3D applications, the process where users load bitmaps to be
used as texture on the top of 3D models and set up how these
planar images should match the geometry of the model is
known as UV mapping (Figure 7). In such applications, U and
V are the standard coordinates representing the axes X and Y
within a face. Since 3D models can have very complex
geometry, mapping each face individually to a portion of the
bitmap texture can be very laborious. These applications
usually provide tools to make the mapping process less
complicated. By projecting the texture on the 3D geometry,
users can associate many polygons to match the texture as
desired. By choosing the right UV projection method, the
modeller can have a good starting point to continue refining
the texture on the model.
As with the UV mapping processes available on 3D
applications, physically projecting 2D graphics on the surface
of physical objects results in a certain level of distortions that
should be handled somehow. The most well-known distortion
related to projectors occurs when the projection surface is

tilted in relation the projector itself, causing a rectangular
image to display as a trapezoid. This scenario is almost
inevitable for projection mapping setups where artists wants to
project multiple images on complex objects having different
angles and distances between their faces, requiring a equally
complex technique to overcome this condition.
In the case of our application, bitmap texture used on the
background, which are intended to be flat, can be projected
within a certain amount of distortions using a basic setup
where each face projects its correspondent portion of the
bitmap multiplied by the projection matrix. However, the same
cannot be applied to moving or interactive objects within the
game. As seen in figure 8, projecting objects which are
manipulated by player (e.g. characters) or perform some
animation inside the game, will flatten with the background if
we follow the same UV projection method used until now.
This issue becomes more visible when projection takes place
while the character or animated objects stands next to the edge
between two adjacent planes, thus being projected on both
planes at the same time (Figure 8 b and d).
We have opted to display these interactive objects in a
foreground layer, using a different technic, so these objects
can have their volume and lively characteristics preserved. In
addition, the objects displayed in the foreground feels like
detached from the background.
In order to make it possible to combine different projection
methods to support mapping game objects, including collision
surfaces such as floors, walls, and interactive characters or
items, with the physical object geometry, we have developed a
structure containing different layers, some hidden, for system
and design evaluation, and some are rendered, as seen in
Figure 9. For simplicity, we are presenting a 3D cube model as
a physical support object to explain the structure of the layers
and how they are setup individually.
Important to mention that, one of the main concepts of this
project is to provide some sort of tangible game design
interface, allowing a game to exist in multiple ways, slightly
changing its complexity in accordance with the geometrical
characteristics of the physical object the player decides to
project the game onto. However, many of the processes
discussed in the following subtopics, related to the game layer
configuration, are setup manually, representing a limitation for
using or designing complex geometry to be used in our project
during this early development stage.

Figure 7- a) bitmap texture with a triangle representation of
the 3D model (b) faces. b) 3D model having its faces textured
by the selected portion of bitmap in (a).

Figure 8 - a) Game character contained inside game map layer is moving to the edge its current plane. Seeing from the perspective of the
player, character seems to be flattened against the plane, and its appearance becomes strangely distorted when the character is being
projected on between two adjacent planes at the same time (b). The same problem is aggrieved when adjacent planes share edges non-
perpendicular to the plane base (floor) (c and d).

81

5.3.1 Physical object and plane conversion
As explained earlier, 3D applications offers some tools used to
facilitate the process of unfolding 3D geometry into a plane
and mapping each polygon face to a portion of a bitmaps
texture. Figure 10 - a shows a some possible way (Cylinder
UV projection) of unfolding the 3D model used on our
application. Projection unfolding methods don’t take into
account every single face of the model, but instead their
relative position to the UV projection plane. All the faces
visible from this plane are flatten, losing on dimension,
resulting in distortions that might need some attention. A
cylinder projection includes UV projection planes around the
object and sew the view of each plane into one single plane
that can be displayed on some UV editor window. On the
other hand, the paper sheet unfolding method is not resulting
of a projection analyses. Instead, this method maps each face
to a plane individually, preserving their corners angles and
their connection, whenever possible, to their adjacent faces.
Also, all the edges are kept in proportion to each other (Figure
10 - b). Although the main purpose of using this unfolding
method is to create a printable version of the 3D model, so it
can be built as a physical object later, we have adopted this as
a UV map layout to be used on converting the game map layer
to the correspondent faces on the physical object because
proportions remains undistorted. This way we can make sure
that if a character on the game (virtual) moves 10 units to the
left, the same applies to the physical model.

5.3.2 Game map layer
This layer is used to design the game (stage) map, including
collision surfaces which defines stage routes and goals. In
addition, collectable items, tunnels and challenges spots for

the game play can be decided on this layer. We have
developed a tool which allows the creation of these game
objects having the physical object planar map (defined in the
previous step) used as a layout. See Figure 9 (b and f). By
simply drawing lines and dragging them with the cursor, we
can setup the basic collision surfaces like floors and walls for
a stage design (Figure 11 - a). After the game map is decided,
each fragment relative to a model plane is subsequently

Figure 9- Game layers structure overview. a) 3D model unfolded, b) Game map (stage design) based on model unfolded layout, c)
background texture bitmap, d) characters displaying on foreground after retrieving their position from game map, e) 3D model,
representation of the physical object, f) Game map split and positioned according to 3D model planes, g) background texture applied/
projected on the 3D model, h) sprites display according to plane orientation in relation to the projector center.

Figure 10 - a) Cylinder UV projection (generally provided by
3D applications) and b) the paper sheet unfolding method,
used for building paper craft folding models.

82

connected to its 3D respective faces as seen in figure 11 (b and
c). Because of this step, we can track the position of the
moving objects, including the main character (manipulated by
players) in relation to the 3D model center. This transform
information is used later to render characters and other
dynamic objects on top of the background layer, and will be
detailed on the respective subtopic.

5.3.3 Background layer
The background layer is nothing but a bitmap texture designed
to be mapped to the 3D object. Since the game map layer is
not visible during the projection, the background texture is
aimed to reinforce the game layout, including visual
indications of floors, walls, holes and obstacles on their
respective positions. Because of this dependency existing
between the background and the game map layer, we have
used the later as a reference to draw textures and other
elements, on an external graphics editor application, and
exported a bitmap image, used in our experiment.
This bitmap image is intended to be projected on the physical
object the same way as it displays on the 3D model. Thus,
after we have mapped the 3D model using traditional
techniques for 3D texturing (on an external application), we
were then able to retrieved the UV coordinates contained in
each vertex of the 3D model and finally convert these
coordinates to be used on the projector plane. As a result, we
could project each 3D face to its correspondent surface on the
physical model.
Currently, the background texture used in our application is
flat and includes no bump (relief) nor other sublayer rendering
instructions. We believe this texture layer can evolve to
incorporate additional sublayers, such as normal or parallax
mapping, causing a more interesting sense of perspective for
the player during the game play.

5.3.4 Characters and moving/animated objects layer
This corresponds to the topmost layer where objects are
animated or manipulated by user input commands. Objects
contained in this layer render using a different technique than
that used on the background layer. The reason is that having
these “floating” objects dependent on the UV coordinate for
each static face, would cause them to look flattened. In
addition, when the animated object swipes from a plane to its
adjacent plane it could be clipped out (Figure 8). A simple
solution for this issue was to project the objects laying on this
layer over the background separately. This way we make sure
the object is always projected in alignment with players’ point
of view (projector center). Let us take the example of the main
character to broaden the scope of this technique.
All the actions (animation) performed by the main character
are condensed in a single bitmap file as shown below, in
Figure 12. This sprite sheet contains all frames used for the
animation correspondent to each action of the main character.

During the game play, the character is controlled by the player
and its position is updated inside the game map layer, where
character’s collisions against the game objects is evaluated. In
order to extract the character position from the game map, we
need to perform some transform operations. After identifying
which plane is holding the character, we transform the 2D
position of the character inside the game map to its 3D
position on that specific plane - on the 3D model. We offset
this point position to the 3D model center and finally multiply
the result to the projector projection matrix in order to have
the character correctly projected on the physical model.
We still need to be aware the projection is being performed at
an angle, incurring in the so called keystone effect, which
might cause the character to display more or less tilted. But
because we have access to the orientation of each plane in the
3D model we are able correct this distortion by multiplying
the character texture corners to the projector matrix, thus
interpolate the result for each pixel within that area.

Figure 11 - a) Some game objects such as collision objects
(floor, walls) are being designed inside the limits of the plane,
represented by dashed lines. Every portion of the game map
contained inside this plane representation becomes a game
map fragment, later attached on the 3D model correspondent
faces, as seen in (b) and (c).

Figure 12 - Main character action sprite sheet for 0º plane
orientation. Every coloured line represents an action
performed by players during the game.

83

Finally, we add a sense of volume to the character and
distance from the background by rendering the character
according to the difference of the plane normal where
character stands and the projector center direction, as observed
in Figure 13. The red arrow represents a vector from the center
of the plane to the projector/player direction, while the green
arrow represents the face normal direction. We have prepared
13 sets of sprites contained all animation frames (see Figure
12), from different views: -45° to 45°, within intervals of 7.5°,
corresponded to the motor minimum interval a game
command will allow the motor to spin. The system will
display the character’s action from one of these sets, by
considering the motor current angle, the projector center and
the character position.
The projection method described in this subtopic intentionally
distorts the object being projected to satisfy the player’s
unique point of view. Because of this arbitrariness, it is
possible that some of the projected objects, including
characters, might result in visual limitations (e.g. perspective
distortions) for viewers situated somehow distant from the
projector center.

6 Conclusion and future work
We have introduced spatial actions to be performed in digital
games projected onto 3-dimensional moving support object
with the goal of mixing this sort of interaction with tangible
interface for games. Traditionally, game consoles embeds a
CPU able to load data from external removable media and
process it in real time according to the player's commands.
The same game can be played, “as is”, in any compatible
console. Instead, we propose the concept where the same
game can vary infinitely according to the physical
environment where it is projected onto. This concept of game
can be developed bearing in mind to run a set of constant
rules, such as the game objectives, challenges, story,
characters, all previously defined by the game developer. At
the same time, all these rules can be distorted by the physical
surface onto where game is decided to be played. We envision
a moment where this sort of hardware and software would be
available for game designers and players so they could
produce creative customised contents to be shared among
other players. For the next steps, we are aiming to produce a
more solid and standalone concept for hardware, including a
self-calibration step, improving the game engine and game
design tools, including procedural methods to build up the
game layout randomly if desired and intuitive methods for 3D
scan support objects.

Acknowledgements
We would like to thank Professor Kazuhiro Kato and Goshiro
Yamamoto from Nara Institute of Science and Technology for
point out the processes which made possible for us to build
our customised calibration tool for the development
environment used in this project.

References
[1] Milgram P., Takemura H., Utsumi A., and Kishino F.,
Augmented Reality: A class of displays on the reality-virtuality
continuum, in Proc. SPIE 2351, Telemanipulator and
Telepresence Technologies, 282, 1994.
[2] Nobumichi, Asai - Omote / Real-time Face Tracking &
Projection Mapping - (https://vimeo.com/101225231), 2014.
[3] Sharp,Simon ; Jenkins, Tom - Speed of Light / aka / The
World’s Tiniest Police Chase (https://vimeo.com/43239312),
2012.
[4] B-Reel - EELS 3D projection mapping multiplayer game -
(https://vimeo.com/31952864), 2011.
[5] Do-It-Yourself: A Portable Digital Map for Tabletop Role
Playing - (http://www.gamergroup.com/page.roleplaying-
game-articles.b.2827.r.1.html), 2010.
[6] Vanguard-gia (http://vanguard-gia.blog.jp/archives/
1025942102.html), 2015.
[7] Wilson, Andrew D. PlayAnywhere: A Compact Interactive
Tabletop, in UIST '05 Proceedings of the 18th annual ACM
symposium on User interface software and technology, pp.
83-92, 2005.
[8] Lampix - http://lampix.co/
[9] Dolce A., Nasman J and Cutler B., ARmy: A Study of
Multi-User Interaction in Spatially Augmented Game, in 2012
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pp 43 - 50, 2012.
[10] Jones B., Sodhi R., Murdock M., Mehra R., Benko H.,
Wilson A., Ofek E., MacIntyre1 B., Raghuvanshi N. and
Shapira L., RoomAlive: magical experiences enabled by
scalable, adaptive projector-camera units, in UIST '14
Proceedings of the 27th annual ACM symposium on User
interface software and technology, pp. 637-644, 2014.
[11] Willis K.D.D., Poupyrev I., Hudson S.E. and Mahler M.,
SideBySide: Ad-hoc Multi-user Interaction with Handheld
Projectors, in UIST '11 Proceedings of the 24th annual ACM
symposium on User interface software and technology, pp.
431-440, 2011
[12] Watanabe Y., Narita G., Tatsuno S., Yuasa T., Sumino K.
and Ishikawa M.: High-speed 8-bit Image Projector at 1,000
fps with 3 ms Delay, in The International Display Workshops
(IDW2015), (Shiga, Japan, 2015.12.11)/Proceedings, pp.
1064-1065, 2015.
[13] Processing IDE - (https://processing.org/overview/).
[14] Radke R.R., Computer Vision for Visual Effects,
Cambridge University Press, pp 216 - 218, 2013.
[15] Geometric Distortions of the Image (http://wtlab.iis.u-
tokyo.ac.jp/~wataru/lecture/rsgis/rsnote/cp9/cp9-3.htm).
[16] Mapamok with Arduino walkthrough (https://github.com/
YCAMInterlab/ProCamToolkit/wiki/mapamok-with-Arduino-
walkthrough).

Figure 13 - same sprite frame from main character displayed
according to a different sprite sheet set.

84

