
1 Introduction
The term Augmented Reality (AR) refers to the possibility of 
extending our perceived reality (real world) by adding 
computer-generated imagery to complete or replace physical 
objects we see. This mixed reality can be exploited in many 
ways, whether by making use of head-mounted or hand-held 
devices, resulting in individual AR experiences, or by 
overlaying, displaying or projecting virtual contents on the 
surface of physical objects, resulting in a collective AR 
experience [1]. Spatial Augmented Reality (SAR, also known 
as projection mapping) is a current trend on developing all 
sorts of mixed reality interfaces from artwork installations, 
experimental movies or games [2,3,4]. The use of projectors 
makes it possible to add new layer of virtual contents 
displayed on physical objects. Because of this characteristic, 
SAR can be easily associated with tangible user interface as a 
method to translate between shared virtuality and reality. 
Interaction with spatially augmented objects is however, in 
many cases, limited to a setup where objects and projectors 
remain static in relation to each other or present some lack of 
mobility. Our research is motivated by exploiting techniques 
capable of producing adhesive SAR to be laid on top of non-
static objects. Here we discuss about the piece of hardware 
developed in order to run our experiment with spatial scenes 
(Figure 1) and point out these actions characteristics.

!
Figure 1 -  Spatial actions are performed on physical creases 
mixing support object movement synchronised with animation 
designed to enhance the sense of depth in the projected scene. 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Abstract  
We propose a novel concept of game, which allows players to experience tangible interaction with the virtual world of 
digital games by mixing motorised scenery with dynamic projection mapping. 
A specific hardware - which includes a controllable platform, on where players can setup customised polygonal shaped 
scenery to play games projected onto its surfaces, and a single, or a pair, of focus free laser pico-projectors pointed 
toward the platform direction - is proposed as a game console able to run this experiment. The controllable platform 
orientation is synchronised with the game play in a way the moving physical scenery and the projected virtual contents 
are constantly aligned. By designing 3-dimensional (3D) animations, which are rendered and projected in accordance 
with the physical surface orientations, we were able to enhance the illusion of depth toward these planar projection 
during the game play, while giving the chance for our flattened 2-dimensional (2D) main character to make use of all 
directions which surrounds him. 
The use of projection mapping is justified since we intent to exploit the characteristics of projected 2D light onto 3D 
objects in order to extend digital games means of expressions. In this paper we discuss about spatial actions, which are 
actions players can perform at physical object creases. When synchronised with motor movements, these actions extend 
the sense of volume in relation to the game character providing a tangible connection between players and digital 
content. We also discuss about the technical aspects regarding the development of this project and its application as a 
tangible game design tool.
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2 Related work
Most of the digital game experiences designed to have 
tangible interfaces using SAR are somehow based on tabletop 
game plays, in such way players can manipulate physical 
props like mini-figures or cards [5,6], having the projectors 
fixed above a table. As example, researches and commercial 
products such as Microsoft PlayAnywhere [7], and Lampix [8] 
seems to be aligned with this setup. 
Other setups that allow projection to be expressed on 3-
dimensional objects or surfaces with or without any degree of 
freedom are also available: 
• ARmy [9] is a tabletop military strategy game where players
can use primitive-shaped blocks to build up their own board 
before the game starts. A camera positioned above the board 
detects the blocks distribution to calculate the game dynamics. 
During the game play the board remains static while mini-
figures are manipulated directly by players, thus updating the 
game instructions.  
• RoomAlive [10] is a concept of immersive gameplay in
which the player's room is 3-dimensionally scanned, allowing 
the system to make use of each physical surface to be part of a 
SAR experience game. During the game play the previously 
scanned surfaces remains static while the players’ bodies 
movements update the game framework.  
• SideBySide [11] proposes a portable device, which embeds
an IR camera in a portable projector. Working similarly as a 
flashlight, which projects virtual information directly on 
planar objects. The player can freely move this hand-held 
device and project contents on apparently any dull surface. 
The contents are updated accordingly to the device orientation 
and readings from the IR camera (when using IR markers). 
Projecting virtual contents onto moving objects requires the 
system to be aware of what content and how this content must 
be projected (Figure 2). The basic framework for this kind of 
applications relies on how the player’s interaction over the 
target objected is detected by image sensors, and how fast and 
efficient the system reads data from these sensors to extract 
relevant information necessary to update the contents to be 
projected. 
Other than limiting the target objects to be moved in a slow 
manner, running sophisticated computing vision subroutines in 
real time can overload graphic processors. This affects the 
application main routine, reducing interaction performance. 
Consequently this compromises the projection alignment with 

the target support, vanishing the illusion necessary to create 
convincing mixed reality. An alternative would require a 
extremely high-rate frame rate camera-projector module 
(above the average 60 fps) [12] connected to a system capable 

of running both computing vision subroutine and game play.  
Instead, in our experiment we are working in the opposite 
direction, having the player to control the system which in its 
turn mechanically controls the physical object (Figure 3). This 
technique has the advantage of eliminating computing vision 
subroutines, thus having the processors dedicated to the 
generation of virtual imagery to be projected. Also, because 
the motor spins accordingly to known constants, it is possible 
to rotate it at any speed supported by the hardware (±10 to 100 
RPM) without having the virtual projection to be misaligned 
with the physical object support. 

3 Hardware and software development
3.1 Hardware 
Originally, the physical object used as game stage can have as 
many degrees of freedom as the number of motors or actuators 
connected to the system. At this very stage, hardware and 
software are under development in order to facilitate its 
evaluation, while the main procedures runs satisfactorily. We 

Figure 3 - An (a) physical object lays on top of (b) a 
controllable platform-hardware placed in front of a (c) free-
focus laser projector. Projector and hardware connected to PC. 
Composition proposed as game console for this experiment.

Figure 2 - Dynamic SAR interactions designed for moving supports depend on image sensors to detect target object movements before 
updating contents to be projected. (a) Side by Side hand-held camera-projector device. (b) Reflective IR markers detected by cameras, 
used on Project Omote, (c) Scanning the environment with Microsoft Kinect sensor in RoomAlive project.
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present the hardware including only one degree of freedom, as 
a turntable platform connected to a 200 steps/revolution 
stepper motor which is driven by a microcontroller subjected 
to PC commands. The system can recognise the angle of this 
turntable to project onto the support object accordingly. When 
hardware is turned on it will run a self-alignment procedure so 
the its rotor will start at origin. 

The turntable platform is stabilised by 3 bearing balls located 
bellow its disc contact points. In addition, the platform disc is 
perforated in a pattern, which allows the posterior fixation of 
objects (Figure 4). Physical objects used as support for 
projection can be made of paper, or 3D printed, having its 
surface made dull for better illumination. Pico-projectors are 

portable devices designed to project contents during more 
casual situations. Their lenses field of view are not so wide 
and the brightness and contrast they offer are limited, since 
they use different source of light in comparison to desktop 
projectors, such as LED or Laser. The choice of using a laser 
projector is due to its focus free characteristic, perfect for the 
case where the distance between projector lens and projected 
surface isn't a constant. Also, the lenses characteristics of these 
projectors allows small details to be observed with satisfactory 
resolution on the nearly projected surfaces. 

3.2 Software 
Developed in Processing IDE [13], it consists of three basic 
modules, which are able to run a projector-calibration tool, an 
interface to the microcontroller, and the game play. Projector 
calibration is made every time a new support is changed or 
when projector or turntable changes their position in relation 
to each other. The motor control sends data to the hardware 
depending on game instructions. These data are degrees of 
rotation the motor is set to perform and revolution speed. 
Motor control can also read if hardware has completed its self-
calibration procedure in order to setting up rotor at origin. The 
game play runs a basic physics class capable or allowing the 
player to move the game main character along the scenes. The 
game is composed by a sequence of planes, designed and 
mapped to each polygonal surface found on the physical 
object. When the player moves through the game, the motor is 
instructed to rotate accordingly. In this scenario, motor can run 
smoothly, following the character position, or revealing next 
scenes abruptly if this is the intention of the stage design. 

 

4 Spatial actions  
We suggest two spatial actions, which can be performed by the 
game main character in order to enhance the perception of 3D 
space or depth in SAR interactions. Spatial actions are designed 
to combine digital animation and physical object movement in 
such way players have the illusion of volume coming from the 

projected surfaces. These actions are provided by making use of 
the physical creases found on the support object and giving to it 
an opportunity to serve as attributes in the game such as places 
the game character specifically can use to perform spatial 
actions, as seen in Figure 5. 

Figure 4 -  Hardware is connected to a PC by (a) serial cable, 
which controls (b) a stepper motor. A support object is fixed 

on (c) a perforated disc mounted on top of the hardware. 

Figure 5 - Spatial actions designed for the turntable platform hardware. Animation plays aligned with the rotation of object support 
enhancing the illusion of depth.
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To follow with the explanation about spatial actions, we would 
like to highlight two spatial actions of them, which are used in 
our application: Sneak peek and Sidestep. 

4.1 Sneak peek  
Sneak peek actions take places on vertically oriented creases 
representing a wall corner from where the avatar can “spy” 
contents on its adjacent polygons in stealth mode. The crease 
angle between polygons must be physically constructed to 
make possible such kind of action inside the game. As a 
default value, if the crease angle between adjacent polygons 
are greater than 60°, the system will accept sneak peek action 
on this location. By performing this command, players can 
anticipate what is coming on next game scenes and get ready 
for a duel or reward, or even finding another path to go in 
order to avoid that area of the game. 

4.2 Sidestep 
Sidestep actions allows a runway manoeuvre to dodge enemy 
fire or seek temporary refuge. In a traditional 2D platform 
game, player would block or try to escape from enemy’s fire 
while being trapped on a 2D coordinate system. In a first 
person shooter game, players can also dodge left or right from 
enemy’s fire by hiding behind walls or door frames. In our 
game, we experiment a hybrid dimensional action, allowing a 
2D character to make use of the physical geometry of the 
object onto where it is being projected. The sidestep action can 
be performed in spots where crease angle found on support 
object allows this kind of interaction between animation and 
support object. That is, when adjacent faces are not flat. 
Sidestep action is designed for vertical or horizontal creases, 
but subjected to the game design basic rules.  

4.3 Other actions to be developed 
There are other actions that can be applied to the game in 
order to explore the geometry and solid properties of the 
physical object. As example, the use of tunnels or holes, 
proposed on the game as means to transport the character from 
a place to another, can bring the discussion about how hollow 
the physical object can be, and how the use projection 
mapping can influence our perception toward the 
characteristics of the object as we know. 

5 Projection and other technical aspects 
5.1 Projector calibration  
The projector calibration is a procedure used for solving the 
projector projection matrix. Specially for dynamic projection 
mapping, that is to say, when the spatial relationship between 
projector and illuminated object are constantly changing, this 
matrix is a key element for ensuring the precise alignment 
between projected virtual content and physical surfaces. The 
matrix contains information about the projector intrinsic and 
extrinsic parameters, such as the projector field of view, the 
projector screen size, the projector center position and 
orientation, among others. These parameters are stored in the 
form of a 4 x 3 matrix which are used to convert a 3D point in 
the virtual world to its correspondent 2D position on the 

projector projection plane. Thus, every fragment existing in 
our game application has its 3D coordinates multiplied by the 
projector projection matrix in order to display correctly on top 
of their correspondent planes in the physical support object. 
We have developed a tool in order to calibrate the projectors 
used in our application. The calibration process basically 
compares a physical object to its equivalent 3D virtual model 
(Figure 6 a and b). We have adopted a calibration method 
based on the single-camera calibration method suggested by 
Richard Radke [14]. This method requires the user to 
arbitrarily chose six non-coplanar vertices stored in a desired 
sequence. Having the physical object completely covered by 
the projection frame, the user can use a mouse cursor. to click 
over the previously determined vertices in the same sequence 
as those have been stored (Figure 6 c). Next, the system has 
enough information from the collected correspondent points to 
solve the projection matrix and project contents (Figure 6 d). 
The projector is said to be calibrated as long as the projector 
and physical object remains in place. Ideally, projector and the 
object platform should be fixed on the same base to avoid 
recalibration in case projector must be relocated. 

5.2 Dynamic projection mapping 
So far, the projection calibration can provide us relative 
accuracy for mapping physical objects in order to have them 
prepared for projections. However, similar results could be 
easily achieved using geometric distortion correction [15], that 
is, manually (e.g. using a mouse cursor) adjusting the image 
plane by dragging its corners until it gets visually aligned to 
the surface of the object one wants to project onto. 
In order to have dynamic projection mapping we need to keep 
track of the physical object position and orientation after 
calibration process is performed so the system can 
automatically recalibrate the projector on the fly. As 
mentioned before, the current system developed for our game 

Figure 6 - a) 3D model representation of the physical object 
(b) used as base for projection; c) Crossed cursor projected on 
object for projector calibration setup; d) Virtual contents 
projected onto the physical object after calibration.
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application does not rely on any sensor, such as cameras, in 
order to track and retrieve information of the physical object 
being used as support for the projection. However, since the 
object is manipulated by user via system instructions, the 
system always knows where the physical object is positioned, 
preserving the calibration results as expected. A similar 
experiment [16] was conducted by the artist Cyril Diagne, 
having a physical object spinning at a controlled speed, which 
allowed the system to be aware of how to perform the 
projection mapping as expected. 

5.3 Projection and game objects layers structure 
In 3D applications, the process where users load bitmaps to be 
used as texture on the top of 3D models and set up how these 
planar images should match the geometry of the model is 
known as UV mapping (Figure 7). In such applications, U and 
V are the standard coordinates representing the axes X and Y 
within a face. Since 3D models can have very complex 
geometry, mapping each face individually to a portion of the 
bitmap texture can be very laborious. These applications 
usually provide tools to make the mapping process less 
complicated. By projecting the texture on the 3D geometry, 
users can associate many polygons to match the texture as 
desired. By choosing the right UV projection method, the 
modeller can have a good starting point to continue refining 
the texture on the model. 
As with the UV mapping processes available on 3D 
applications, physically projecting 2D graphics on the surface 
of physical objects results in a certain level of distortions that 
should be handled somehow. The most well-known distortion 
related to projectors occurs when the projection surface is 

tilted in relation the projector itself, causing a rectangular 
image to display as a trapezoid. This scenario is almost 
inevitable for projection mapping setups where artists wants to 
project multiple images on complex objects having different 
angles and distances between their faces, requiring a equally 
complex technique to overcome this condition. 
In the case of our application, bitmap texture used on the 
background, which are intended to be flat, can be projected 
within a certain amount of distortions using a basic setup 
where each face projects its correspondent portion of the 
bitmap multiplied by the projection matrix. However, the same 
cannot be applied to moving or interactive objects within the 
game. As seen in figure 8, projecting objects which are 
manipulated by player (e.g. characters) or perform some 
animation inside the game, will flatten with the background if 
we follow the same UV projection method used until now. 
This issue becomes more visible when projection takes place 
while the character or animated objects stands next to the edge 
between two adjacent planes, thus being projected on both 
planes at the same time (Figure 8 b and d). 
We have opted to display these interactive objects in a 
foreground layer, using a different technic, so these objects 
can have their volume and lively characteristics preserved. In 
addition, the objects displayed in the foreground feels like 
detached from the background.  
In order to make it possible to combine different projection 
methods to support mapping game objects, including collision 
surfaces such as floors, walls, and interactive characters or 
items, with the physical object geometry, we have developed a 
structure containing different layers, some hidden, for system 
and design evaluation, and some are rendered, as seen in 
Figure 9. For simplicity, we are presenting a 3D cube model as 
a physical support object to explain the structure of the layers 
and how they are setup individually. 
Important to mention that, one of the main concepts of this 
project is to provide some sort of tangible game design 
interface, allowing a game to exist in multiple ways, slightly 
changing its complexity in accordance with the geometrical 
characteristics of the physical object the player decides to 
project the game onto. However, many of the processes 
discussed in the following subtopics, related to the game layer 
configuration, are setup manually, representing a limitation for 
using or designing complex geometry to be used in our project 
during this early development stage. 

Figure 7- a) bitmap texture with a triangle representation of 
the 3D model (b) faces. b) 3D model having its faces textured 
by the selected portion of bitmap in (a).

Figure 8 - a) Game character contained inside game map layer is moving to the edge its current plane. Seeing from the perspective of the 
player, character seems to be flattened against the plane, and its appearance becomes strangely distorted when the character is being 
projected on between two adjacent planes at the same time (b). The same problem is aggrieved when adjacent planes share edges non-
perpendicular to the plane base (floor) (c and d).
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5.3.1 Physical object and plane conversion 
As explained earlier, 3D applications offers some tools used to 
facilitate the process of unfolding 3D geometry into a plane 
and mapping each polygon face to a portion of a bitmaps 
texture. Figure 10 - a shows a some possible way (Cylinder 
UV projection) of unfolding the 3D model used on our 
application. Projection unfolding methods don’t take into 
account every single face of the model, but instead their 
relative position to the UV projection plane. All the faces 
visible from this plane are flatten, losing on dimension, 
resulting in distortions that might need some attention. A 
cylinder projection includes UV projection planes around the 
object and sew the view of each plane into one single plane 
that can be displayed on some UV editor window. On the 
other hand, the paper sheet unfolding method is not resulting 
of a projection analyses. Instead, this method maps each face 
to a plane individually, preserving their corners angles and 
their connection, whenever possible, to their adjacent faces. 
Also, all the edges are kept in proportion to each other (Figure 
10 - b). Although the main purpose of using this unfolding 
method is to create a printable version of the 3D model, so it 
can be built as a physical object later, we have adopted this as 
a UV map layout to be used on converting the game map layer 
to the correspondent faces on the physical object because 
proportions remains undistorted. This way we can make sure 
that if a character on the game (virtual) moves 10 units to the 
left, the same applies to the physical model. 

5.3.2 Game map layer 
This layer is used to design the game (stage) map, including 
collision surfaces which defines stage routes and goals. In 
addition, collectable items, tunnels and challenges spots for 

the game play can be decided on this layer. We have 
developed a tool which allows the creation of these game 
objects having the physical object planar map (defined in the 
previous step) used as a layout. See Figure 9 (b and f). By 
simply drawing lines and dragging them with the cursor, we 
can setup the basic collision surfaces like floors and walls for 
a stage design (Figure 11 - a). After the game map is decided, 
each fragment relative to a model plane is subsequently 

Figure 9- Game layers structure overview. a) 3D model unfolded, b) Game map (stage design) based on model unfolded layout, c) 
background texture bitmap, d) characters displaying on foreground after retrieving their position from game map, e) 3D model, 
representation of the physical object, f) Game map split and positioned according to 3D model planes, g) background texture applied/
projected on the 3D model, h) sprites display according to plane orientation in relation to the projector center.

Figure 10 - a) Cylinder UV projection (generally provided by 
3D applications) and b) the paper sheet unfolding method, 
used for building paper craft folding models.

82



connected to its 3D respective faces as seen in figure 11 (b and 
c). Because of this step, we can track the position of the 
moving objects, including the main character (manipulated by 
players) in relation to the 3D model center. This transform 
information is used later to render characters and other 
dynamic objects on top of the background layer, and will be 
detailed on the respective subtopic.   

5.3.3 Background layer 
The background layer is nothing but a bitmap texture designed 
to be mapped to the 3D object. Since the game map layer is 
not visible during the projection, the background texture is 
aimed to reinforce the game layout, including visual 
indications of floors, walls, holes and obstacles on their 
respective positions. Because of this dependency existing 
between the background and the game map layer, we have 
used the later as a reference to draw textures and other 
elements, on an external graphics editor application, and 
exported a bitmap image, used in our experiment. 
This bitmap image is intended to be projected on the physical 
object the same way as it displays on the 3D model. Thus, 
after we have mapped the 3D model using traditional 
techniques for 3D texturing (on an external application), we 
were then able to retrieved the UV coordinates contained in 
each vertex of the 3D model and finally convert these 
coordinates to be used on the projector plane. As a result, we 
could project each 3D face to its correspondent surface on the 
physical model. 
Currently, the background texture used in our application is 
flat and includes no bump (relief) nor other sublayer rendering 
instructions. We believe this texture layer can evolve to 
incorporate additional sublayers, such as normal or parallax 
mapping, causing a more interesting sense of perspective for 
the player during the game play. 

5.3.4 Characters and moving/animated objects layer 
This corresponds to the topmost layer where objects are 
animated or manipulated by user input commands. Objects 
contained in this layer render using a different technique than 
that used on the background layer. The reason is that having 
these “floating” objects dependent on the UV coordinate for 
each static face, would cause them to look flattened.  In 
addition, when the animated object swipes from a plane to its 
adjacent plane it could be clipped out (Figure 8). A simple 
solution for this issue was to project the objects laying on this 
layer over the background separately. This way we make sure 
the object is always projected in alignment with players’ point 
of view (projector center). Let us take the example of the main 
character to broaden the scope of this technique. 
All the actions (animation) performed by the main character 
are condensed in a single bitmap file as shown below, in 
Figure 12. This sprite sheet contains all frames used for the 
animation correspondent to each action of the main character. 

During the game play, the character is controlled by the player 
and its position is updated inside the game map layer, where 
character’s collisions against the game objects is evaluated. In 
order to extract the character position from the game map, we 
need to perform some transform operations. After identifying 
which plane is holding the character, we transform the 2D 
position of the character inside the game map to its 3D 
position on that specific plane - on the 3D model. We offset 
this point position to the 3D model center and finally multiply 
the result to the projector projection matrix in order to have 
the character correctly projected on the physical model. 
We still need to be aware the projection is being performed at 
an angle, incurring in the so called keystone effect, which 
might cause the character to display more or less tilted. But 
because we have access to the orientation of each plane in the 
3D model we are able correct this distortion by multiplying 
the character texture corners to the projector matrix, thus 
interpolate the result for each pixel within that area. 

Figure 11 - a) Some game objects such as collision objects 
(floor, walls) are being designed inside the limits of the plane, 
represented by dashed lines. Every portion of the game map 
contained inside this plane representation becomes a game 
map fragment, later attached on the 3D model correspondent 
faces, as seen in  (b) and (c).

Figure 12 - Main character action sprite sheet for 0º plane 
orientation. Every coloured line represents an action 
performed by players during the game. 
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Finally, we add a sense of volume to the character and 
distance from the background by rendering the character 
according to the difference of the plane normal where 
character stands and the projector center direction, as observed 
in Figure 13. The red arrow represents a vector from the center 
of the plane to the projector/player direction, while the green 
arrow represents the face normal direction. We have prepared 
13 sets of sprites contained all animation frames (see Figure 
12), from different views: -45° to 45°, within intervals of 7.5°, 
corresponded to the motor minimum interval a game 
command will allow the motor to spin. The system will 
display the character’s action from one of these sets, by 
considering the motor current angle, the projector center and 
the character position.  
The projection method described in this subtopic intentionally 
distorts the object being projected to satisfy the player’s 
unique point of view. Because of this arbitrariness, it is 
possible that some of the projected objects, including 
characters, might result in visual limitations (e.g. perspective 
distortions) for viewers situated somehow distant from the 
projector center. 

6 Conclusion and future work
We have introduced spatial actions to be performed in digital 
games projected onto 3-dimensional moving support object 
with the goal of mixing this sort of interaction with tangible 
interface for games. Traditionally, game consoles embeds a 
CPU able to load data from external removable media and 
process it in real time according to the player's commands. 
The same game can be played, “as is”, in any compatible 
console. Instead, we propose the concept where the same 
game can vary infinitely according to the physical 
environment where it is projected onto. This concept of game 
can be developed bearing in mind to run a set of constant 
rules, such as the game objectives, challenges, story, 
characters, all previously defined by the game developer. At 
the same time, all these rules can be distorted by the physical 
surface onto where game is decided to be played. We envision 
a moment where this sort of hardware and software would be 
available for game designers and players so they could 
produce creative customised contents to be shared among 
other players. For the next steps, we are aiming to produce a 
more solid and standalone concept for hardware, including a 
self-calibration step, improving the game engine and game 
design tools, including procedural methods to build up the 
game layout randomly if desired and intuitive methods for 3D 
scan support objects. 

Acknowledgements
We would like to thank Professor Kazuhiro Kato and Goshiro 
Yamamoto from Nara Institute of Science and Technology for 
point out the processes which made possible for us to build 
our customised calibration tool for the development 
environment used in this project. 

References
[1] Milgram P., Takemura H., Utsumi A., and Kishino F., 
Augmented Reality: A class of displays on the reality-virtuality 
continuum, in Proc. SPIE 2351, Telemanipulator and 
Telepresence Technologies, 282, 1994. 
[2] Nobumichi, Asai - Omote / Real-time Face Tracking & 
Projection Mapping - (https://vimeo.com/101225231), 2014.  
[3] Sharp,Simon ; Jenkins, Tom - Speed of Light / aka / The 
World’s Tiniest Police Chase (https://vimeo.com/43239312),
2012. 
[4] B-Reel - EELS 3D projection mapping multiplayer game - 
(https://vimeo.com/31952864), 2011. 
[5] Do-It-Yourself: A Portable Digital Map for Tabletop Role 
Playing - (http://www.gamergroup.com/page.roleplaying-
game-articles.b.2827.r.1.html), 2010. 
[6] Vanguard-gia  (http://vanguard-gia.blog.jp/archives/
1025942102.html), 2015.  
[7] Wilson, Andrew D. PlayAnywhere: A Compact Interactive 
Tabletop, in UIST '05 Proceedings of the 18th annual ACM 
symposium on User interface software and technology, pp. 
83-92, 2005. 
[8] Lampix - http://lampix.co/ 
[9] Dolce A., Nasman J and Cutler B., ARmy: A Study of 
Multi-User Interaction in Spatially Augmented Game, in 2012 
IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition Workshops, pp 43 - 50, 2012. 
[10] Jones B., Sodhi R., Murdock M., Mehra R., Benko H.,  
Wilson A.,  Ofek E., MacIntyre1 B., Raghuvanshi N. and 
Shapira L., RoomAlive: magical experiences enabled by 
scalable, adaptive projector-camera units, in UIST '14 
Proceedings of the 27th annual ACM symposium on User 
interface software and technology, pp. 637-644, 2014. 
[11] Willis K.D.D., Poupyrev I., Hudson S.E. and Mahler M., 
SideBySide: Ad-hoc Multi-user Interaction with Handheld 
Projectors, in UIST '11 Proceedings of the 24th annual ACM 
symposium on User interface software and technology, pp. 
431-440, 2011 
[12] Watanabe Y., Narita G., Tatsuno S., Yuasa T., Sumino K. 
and Ishikawa M.: High-speed 8-bit Image Projector at 1,000 
fps with 3 ms Delay, in The International Display Workshops 
(IDW2015), (Shiga, Japan, 2015.12.11)/Proceedings, pp.
1064-1065, 2015. 
[13] Processing IDE - (https://processing.org/overview/). 
[14] Radke R.R., Computer Vision for Visual Effects, 
Cambridge University Press, pp 216 - 218, 2013. 
[15] Geometric Distortions of the Image (http://wtlab.iis.u-
tokyo.ac.jp/~wataru/lecture/rsgis/rsnote/cp9/cp9-3.htm). 
[16] Mapamok with Arduino walkthrough (https://github.com/
YCAMInterlab/ProCamToolkit/wiki/mapamok-with-Arduino-
walkthrough).

Figure 13 - same sprite frame from main character displayed 
according to a different sprite sheet set.
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